Rearrangement of Catharanthine. 5.+ 21-Cyanocatharanthine

P. Mangeney, N. Langlois, C. Leroy, C. Riche, and Y. Langlois*

Institut de Chimie des Substances Naturelles du CNRS, *91190* Gif-Sur- Yvette, France

Received March **30,** 1982

21-Cyanocatharanthine (1 1) and **15-cyano-16-(methoxycarbonyl)-16-methoxy-l5-cyano-A20-cleavamies** 12 and **13** were prepared in two steps from catharanthine **(1).** In a study directed toward a new hemisynthetic route to vinblastine **(6)**, the 21-cyanocatharanthine (11) was shown to undergo $C_6 - C_5$ bond rupture as the sole fragmentation pathway under modified Polonovski conditions. When the reaction was carried out in the presence of vindoline **(4),** the rearranged dimeric product 29 was isolated.

Catharanthine **(1)** is a major alkaloidal constituent of the Madagascan periwinkle, Catharanthus roseus (G. Don, Apocynaceae), and undergoes a number of fragmentation reactions (Scheme I).

The fragmentation in acidic media of the $C_{21}-C_{16}$ bond, studied by Gorman, Neuss, et al.,¹ led after reduction to 16(S)- and **16(R)-(methoxycarbonyl)cleavamines (2a** and **2b**). The reverse fragmentation $(C_{16}-C_{21})$ of catharanthine N_b -oxide (3) induced by trifluoroacetic anhydride (TFAA; modified Polonovski reaction²) in the presence of vindoline **(4)** allowed us to prepare by hemisynthesis anhydrovinblastine **(5)3** and the main antitumor alkaloids of the vinblastine (6) group.⁴

Under classical Polonovski conditions⁵ (acetic anhydride), catharanthine N_b -oxide (3) gave rise to a completely different fragmentation pathway and provided products derived from C_5-C_6 bond fission, like compound 7.6

Lastly, two fragmentations of the $C_{21}-N_b$ bond are noteworthy. The first arises via a [2,3] sigmatropic rearrangement of the N_b -oxide 3 to afford isoxazolidine (8) . The second involves a decarboxylative fragmentation of catharanthinic acid and gives rise to 16-demethoxycarbony1)catharanthine **(9)** through the intermediacy of the diene **los** (Scheme I).

We report herein a new rearrangement of catharanthine $N_{\rm b}$ -oxide (3) leading principally to 21-cyanocatharanthine **(11)** and the details of a study concerning the reactivity of this compound.

The Polonovski reaction is known to evolve in quite different fashions according to, inter alia, the nucleophilic species involved in the reaction. $6,9$ Thus, in connection with our work oriented toward the hemisynthesis of vinblastine **(S),'O** we decided to study the behavior of catharanthine N_b -oxide (3) in the presence of trifluoroacetic anhydride and cyanide ion.

Catharanthine N_b -oxide (3), when first treated by trifluoroacetic anhydride and, after evaporation of the excess reagent in vacuo, by a saturated solution of potassium cyanide in methanol, led to three indolic products.

The major product was assigned structure **11** on the basis of its spectral properties. The mass spectrum exhibited a molecular ion at *m/z* 361 while the IR spectrum revealed a cyano absorption at 2230 cm-'. Comparison of the 'H NMR spectrum of compound 11 with that of catharanthine (1) indicated the absence of a signal for $C_{21}H$. In addition, the 13C NMR spectrum exhibited two signals of quaternary carbons at 64.5 and 60.8 ppm.

Compounds 12 and 13 exhibited identical molecular ions $(M^+$ at m/z 393) and similar fragmentation patterns in their mass spectra. In each case the base peak at *m/z* 160 localized the position of the cyano group on the piperidine portion of the molecule. The **'H** NMR spectrum of compound 12 showed two methoxy signals at 3.64 and 3.45

ppm, whereas the corresponding signals in the 'H NMR spectrum of compound **13** appeared at 3.99 and 2.94 ppm. These data suggested that compounds 12 and 13 were epimeric at C_{16} .¹¹ The stereochemistry at C_{16} and C_{15} was ultimately established by a single-crystal X-ray analysis of compound 12. The complete molecular structure is given in Figure 1.

If the reaction mixture (catharanthine N_b -oxide (3),

- **(1)** M. Gorman, N. Neuss, and N. J. Cone, *J.* Am. Chem. *SOC.,* **87,93**
- **(1965). (2)** P. Potier, J. Nat. Prod., **43, 72 (1980).**
- **(3) N.** Langlois, **F.** Gueritte, Y. Langlois, and P. Potier, *J.* Am. Chem. *SOC.,* **98, 7017 (1976).**
- **(4)** P. Mangeney, R. Z. Andriamialisoa, N. Langlois, Y. Langlois, and P. Potier, *J.* Am. Chem. SOC., **101, 2243 (1979),** and references therein.
- **(5)** M. Polonovski and M. Polonovski, Bull. SOC. *Chim. Fr.,* **1190 (1927). (6)** (a) N. Langlois, F. Gueritte, Y. Langlois, and P. Potier, Tetrahe-
-
- dron Lett., 1487 (1976); (b) R. Z. Andriamialisoa, N. Langlois, Y. Langlois, P. Potier, and P. Bladon, Can. J. Chem., 57, 2572 (1979).

(7) Y. Langlois, F. Gueritte, R. Z. Andriamialisoa, N. Langlois, P. Potier, A. Chiaro
-
- **(10)** P. Mangeney, R. Z. Andriamialisoa, N. Langlois, Y. Langlois, and **(11)** Examination **of** CD curves of compounds **12** and **13** did not allow P. Potier, *J.* Org. Chem., **44, 3765 (1979).**

us to attribute the configuration at C_{16} .

^{&#}x27;For the preceding paper in the series, see ref 6b.

Figure 1. Complete molecular structure for **12.**

TFAA, CH_2Cl_2) was treated, after removal of the excess TFAA in vacuo, first with methanol alone and then with methanolic KCN, cleavamine derivatives **12** and **13** could be prepared to the complete exclusion of compound **11.**

This last experiment led us **to** propose a mechanism for the formation **of** compounds **11-13.**

In the case of 21-cyanocatharanthine (11), although examples of such bridgehead intermediates have been reported,12 the formation **of** the immonium salt **14** (Scheme 11) seems unlikely. The addition of cyanide ion at C_{21} in conjugated immonium **16** could lead via the quaternary ammonium salt **1Sa (R** = CN) and Stevens rearrangement to the 21-cyanocatharanthine **(11;** path a, Scheme 111). Furthermore, the formation of a quaternary ammonium salt, $18b$ $(R = H)$, has been observed during the coupling reaction of catharanthine N_h -oxide **(3)** with vindoline **(4)**.¹³

The formation of compounds **12** and **13** appears to be the result of competition between cyanide and methoxide ions for the highly electrophilic conjugated immonium salt **16.** Intermediate **19,** the product of addition of methoxide ion at C_{21} , could be transformed by an S_N2' process to cleavamine-like compounds **12** and **13** bearing a cyano substituent at C_{15} .

This hypothesis is consistent with the fact that the formation **of** 21-cyanocatharanthine **(1 1)** was not observed in the second experiment when the reaction medium was exposed to methanol prior to treatment by potassium cyanide. In that case only path b (Scheme 111) was operative.

21-Cyanocatharanthine **(1 I),** easily obtained from catharanthine **(I),** might in principle serve **as** a precursor of enamine **22,** whose transformation to vinblastine **(6)** is known.4 Two paths were envisioned for the conversion

Scheme **IV**

of **11** into enamine **22** and are outlined in Scheme IV. Compound **11** or its dihydroderivative **23a** might be used to prepare intermediates **20** or **21,** respectively, via a classical coupling reaction. The latter compound upon elimination of HCN would afford enamine **22** (Scheme **IV).**

Thus, 21-cyanocatharanthine **(1 1)** was treated with m-chloroperbenzoic acid (MCPA, 1.25 equiv); however, this reaction at temperatures as low as -30 °C failed to afford the N_b -oxide 24 but led rather to a rearranged product, **27a,** whose structure was assigned on the basis of its high-field **'H** NMR spectrum. Double-resonance experiments allowed the identification of all protons in the molecule (see Experimental Section).

The formation of nitrone **27a** can be rationalized by a [2,3] sigmatropic rearrangement of the intermediate *N*oxide **247** followed by overoxidation of the isoxazolidine **25,** leading to compound **27a** via the unstable isoxazolidine N_b -oxide $26¹⁴$ (Scheme V). Indeed, in a related oxidation rearrangement sequence isoxazolidine **8** led to the corresponding nitrone **27b.**

Nitrone formation could be suppressed if the oxidation steps were carried out at -70 **"C.** Exposure of 21-cyano-

^{(12) (}a) K. J. Shea and S. Wise, J. Am. Chem. Soc., 100, 6519 (1978);
(b) H. O. House, W. A. Kleschick, and E. J. Zaiko, J. Org. Chem., 43, 3653 **(1978); (c) K. J.** Shea, Tetrahedron, **36, 1683 (1980).**

⁽¹³⁾ P. Mangeney, et **al.,** to be submitted for publication.

⁽¹⁴⁾ (a) **J. J.** Tufariello and G. B. Mullen, *J.* Am. Chem. SOC., **100,3638 (1978);** (b) **N. A.** Lebel, M. E. Post, and D. Hwang, *J. Org.* Chem., **44, 1819 (1979).**

catharanthine (11) to m-chloroperbenzoic acid at -70 °C in the presence of vindoline $(4)^{15}$ followed by the addition of TFAA led to the formation of coupling product **28** (Scheme VI). In sharp contrast to what we observed with catharanthine (**1),3** the modified Polonovski reaction induced only C_5-C_6 fragmentation.

The feasibility of using path b (Scheme IV) to prepare the enamine **22** was in turn examined. 21-Cyanocatharanthine **(11)** led by hydrogenation to 21-cyano-**15,20-dihydrocatharanthine** (23a), whose corresponding N-oxide **23b** was stable at -10 "C. In the presence **of** vindoline (4) and TFAA, this compound led only to the coupling product **29** (Scheme VI).

The additional steric hindrance engendered by cyanide at C_{21} cannot completely explain the totally unlike orientation of the fragmentation reaction in comparison with catharanthine (1). In addition, the more or less strict antiperiplanarity of the N_b -O and C_5-C_6 bonds could well be a factor in the orientation toward either C_5-C_6 or $C_{16}-C_{21}$ fragmentation reactions. The preferential orientation toward the C_5-C_6 fragmentation has already been observed with other catharanthine derivatives.¹⁷

Other studies directed toward the unequivocal synthesis of Δ^{20} -anhydrovinblastine (22) are currently under investigation in our laboratory.

Experimental Section

Melting points were taken on a Kofler apparatus. Optical rotations were measured (g/100 mL of solvent) on a Perkin-Elmer 141 MC, infrared spectra (cm⁻¹, CHCl₃) on a Perkin-Elmer 257, ultraviolet spectra [EtOH; λ_{max} , nm (e)] on a Bausch and Lomb Spectronic 505, and CD curves [EtOH; λ_{max} , nm ($\Delta \epsilon$)] on a Roussel-Jouan Dichrograph 11. 'H NMR spectra were obtained (CDCl₃; Me₄Si, δ 0) from Varian T 60 and IEF 240- and 400- MHz^{18} spectrometers (chemical shifts are given as δ values, and coupling constants, *J,* are given in hertz; s, d, t, dd, and m indicate singlet, doublet, triplet, doublet of doublets, and multiplet, respectively). ¹³C NMR spectra (data given as δ values) were recorded on a Brucker HX 90 E apparatus. Mass spectra were measured on an AEI MS9 and MS50. Preparative layer chromatography (preparative TLC) was performed with Kieselgel HF 254 (Merck).

Preparation of Compounds 11-13. To a stirred solution of catharanthine N_b -oxide (3;³ 400 mg, 1.1 mmol) in dry CH₂Cl₂ (5 **mL**) was added under argon at -78 °C TFAA (0.4 mL, 2.77 mmol). After 0.5 h, the reaction medium was evaporated in vacuo, and the residue was dissolved in a saturated solution of KCN in anhydrous methanol **(5** mL). This solution was stirred for 12 h at 20 °C, poured into brine, and then extracted with CHCI₃. After drying with $Na₂SO₄$, filtration, and evaporation of the organic layer, the residue was purified by preparative TLC (eluent ether/hexane/methanol, 80:15:5); compounds 11 (75 mg, 17%), 12 (58 mg, 13%), and 13 (192 mg, 51%) were isolated.

Compound 11: mp 108 °C (EtOH); $[\alpha]^{\infty}$ _D -41° (c 1.07, EtOH); IR 3400,2950,2230,1730,1650; UV 228 (15 200), 286 (6800), 292 (6100) ; CD 285 (-), 238 (+), 200 (+); MS, m/z 361 (M⁺), 334, 229, 214, 201, 160, 154, 147; *NMR* (240 *MHz*) 7.65 (s, 1 H, N_aH), 7.5-7.0 $(m, 4 H, H \text{ aromatic})$; 6.00 (d, 1 H, $J_{14,15} = 6$, $C_{15} H$), 3.84 (s, 3) H, C_{16} CO₂CH₃), 1.08 (t, 3 H, $J_{18,19} = 8$, C_{18} H₃); ¹³C NMR (CDCl₃) 171.8 (CO), 145.2 (C₂₀), 134.0 (C₁₃), 132.9 (C₂), 129.9 (C₈), 124.5 (C_{15}) , 122.1 (C_{11}) , 119.8 (C_{10}) , 118.5 (C_9) , 117.4 $(C = N)$, 111.8 (C_7) , 110.9 (C₁₂), 64.5 (C₂₁), 60.8 (C₁₆), 52.9 (OCH₃), 49.5 (C₃ + C₅), 36.6 (C₁₇), 29.0 (C₁₄), 25.5 (C₁₉), 20.2 (C₆), 10.9 (C₁₈).

 $\text{Componn\ddot{d}}$ 12: mp 132 °C (EtOH); $[\alpha]^{20}$ ^o + 147° (c 1.03, EtOH **IR** 3400,2950,2220,1730,1650; W 228 (16500), 286 *(Ssoo),* 292 (6600); CD 285 (+), 232 (-), 214 (+); MS, (relative intensity) *m/z* 393 (M+'), 378, 334, 232, 214, 160 (100); NMR (240 MHz), 8.8 (s, 1 H, N_aH), 7.5-7.0 (m, 4 H, H aromatic), 5.95 (s, 1 H, C_{21}) H), 3.64 *(s, 3 H, C*₁₆CO₂CH₃), 3.45 *(s, 3 H, C*₁₆OCH₃), 1.10 *(t, 3* H, C₁₈H₃); ¹³C NMR (CDCl₃) 172.4 (CO); 134.6 and 132.2 (C₁₃ and (C_2) , 133.8 (C_{21}) , 129.4 (C_8) , 122.9 (C_{10}) ; 122.5 (C_{20}) , 119.4 and 118.3 $(C_9$ and C_{11} , 111.2 $(C_7$ and C_{12}), 98.8 $(C = N)$, 80.6 (C_{16}) , 53.7 (C_5) , 52.8 and 51.7 (CO₂CH₃ and OCH₃), 44.4 (C₃), 34.9 and 28.6 (C₁₅) and C_{14}), 30.6 (C_{17}), 27.4 and 26.5 (C_{19} and C_6), 13.5 (C_{18}).

Structural analysis for 12: system orthorhombic; space group $P2_12_12_1$; $a = 8.358$ (3), $b = 13.540$ (5), $c = 21.445$ (8) Å; Z $= 4$; μ (Cu $\hat{K}\alpha$) = 5.1 cm⁻¹; $d_c = 1.22$ g cm⁻³. Intensity data were measured on a Philips PW1100 diffractometer by using graphite-monochromated Cu $\text{K}\alpha$ radiation ($\lambda = 1.5418$ Å) and the $(\omega - 2\theta)$ scan-technique up to $\theta = 65^{\circ}$. Of the 2193 measured reflections, 1226 were considered as observed $[I > 3\sigma(I); \sigma(I)]$ derived from counting statistics]. The structure was solved by direct methods and refined by least-squares methods with anisotropic thermal parameters for nonhydrogen atoms. A molecule of ethanol was found from the difference Fourier map. Its oxygen atom occupied two different positions and is hydrogen bonded to N1 and N(C=N) according to the following scheme: N1- H--OH--N(C=N) [distances: 2.98 and 2.71 Å (first site) and 3.30 and 3.10 **A,** respectively]. The ethyl chain is also disordered, occuping two positions with an approximate relative weight of **0.5.** Hydrogen atoms were located on the difference Fourier maps. They were replaced geometrically $(d_{C-H} = 1.08 \text{ Å})$ and assigned the equivalent isotropic thermal parameters of the attached atom. The final R factor is 0.072. Calculations were performed on a CII-HB Mini6 computer, with the main programs being $SHELX^T$

⁽¹⁵⁾ Nitrogen Nb of vindoline **(4)** is **proteded** against oxidative reagents by a hydrogen bond with an alcoholic function of Cl6: L. Diatta, Y. Langlois, N. Langlois, and P. Potier, Bull. SOC. Chim. *Fr.,* **671 (1975).**

⁽¹⁶⁾ C. A. Grob, Angew. Chem., Int. Ed. Engl., 8, 535 (1969).

(17) (a) R. Z. Andriamialisoa, Y. Langlois, N. Langlois, and P. Potier, $C. R. Hebd. Seances Accd. Sci. Set. CF.$ (284, 751 (1977); (b) Y. Honma

and Y. Ban, Heterocycles, 6, 291 hedron Lett., **155 (1978).**

⁽¹⁸⁾ (a) **S.** K. Kan, P. Gonord, C. Duret, J. Salset, and C, Vibet, *Rev.* Sci. Instrum., **44, 1725 (1973);** (b) **M.** Lounasmaa and S. K. Kan, Tetrahedron, **36, 1607 (1980).**

Figure 2. Oyz projection showing the hydrogen-bonding scheme. The disordered ethyl chain and ethanol molecule are indicated by dotted lines. Distances are in angstroms.

and DEVIN.²⁰ Computer drawings were done with $ORTEP²¹$ (see Figure 2).

Figure 2).
Compound 13: mp 114 °C (EtOH); $[\alpha]^{20}$ _D + 72° *(c* 0.88, EtOH); IR 3400,2950,2230,1730,1650; UV 226,266,288,295 (neutral), 226,275,288,295 (acidic); CD 250 (+), 215 (-); MS, *m/z* (relative intensity) 393 (M⁺), 378, 334, 232, 214, 160 (100); ¹H NMR (240 MHz) 8.8 (s, 1 H, N_aH), 7.5-7.0 (m, 4 H, H aromatic), 5.95 (s, 1 H, C₂₁H), 3.99 **(s, 3 H, C₁₆CO₂CH₃), 2.94 (s, 3 H, C₁₆OCH₃)**, 1.03 **(t, 3 H, C₁₈H**₃).

Preparation of Compounds 12 and 13 (by reaction of CH₃OH followed by addition of KCN). Catharanthine N_b -oxide $(3, 200)$ mg, 0.57 mmol) in solution in dry CH_2Cl_2 (2.5 mL) was treated at -78 °C for 0.5 h by TFAA (0.2 mL, 1.38 mmol). After evaporation of the solvent, the residue was dissolved in CH₃OH (5 mL), stirred at room temperature under argon for 1 h, and then saturated with KCN. After the usual workup and purification by preparative TLC (eluent ether/hexane/methanol, 80:15:5), 12 (42) mg, 19%) and **13** (35 mg, 16%) were isolated.

Preparation of Compound 27a. MCPBA (8.6 mg, 0.05 mmol) in dry CH_2Cl_2 (2.5 mL) was added at 30 °C to a stirred solution of 21-cyanocatharanthine (11; 15 mg, 0.04 mmol) in CH₂Cl₂ (2.5) **mL)** under argon. After 10 min the reaction mixture was poured into a saturated aqueous solution of Na_2CO_3 (0.5 mL) and then extracted with CHCl₃. After the usual workup and preparative TLC (eluent CHC13/CH30H), the compound **27a** was obtained: 9.7 mg (61%); IR 3400,2950,2200,1730,1605; UV 228,288,296, 306; MS, *m/z* 393 (M"), 378,364,187,156,139,110; NMR (400 MHz) 9.57 (s, 1 H, N_aH), 7.43-7.1 (m, 4 H, H aromatic), 6.88 (d, mm
1 H, J_{15,OH} = 12, C₁₅OH), 5.68 (s, 1 H, C₃H), 4.35 (dd, 1 H, J_{OH,15} the 12 $J_{14,15} = 5$, $C_{15}H$), 3.95 (dd, 1 H, $J_{5,5'} = 11$, $J_{5,6} = 4$, C_5H), 3.90 (s, 3 H , C₁₆CO₂CH₃), 3.5 (dd, 1 H, $J_{6,6'}^{\text{5}} = 15$, $J_{5,6}^{\text{5}} = 4$, C₆H), C_6 H), 2.9 (m, 2 H, $C_{19}H_2$), 2.7 (ABX system, 2 H, $J_{17,17'} = 8$, $J_{14,17}$ $= 4, C_{17}H_2$, 1.22 (t, 3 H, $J_{18,19} = 7, C_{18}H_3$); ¹³C *NMR* (CDCl₃) 174.4 (C_8) , 123.9, 110.4, and 118.2 $(C_{10}$, C_{11} , and C_9), 117.3 (C=N), 112.3 3.37 (dd, 1 H, $J_{5,5'} = 11$, C_5 H), 3.2 (m, 1 H, C_{14} H), 3.06 (m, 1 H, 3.37 (dd, 1 H, $J_{5,5'} = 11$, C_5 H), 3.2 (m, 1 H, C_{14} H), 3.06 (m, 1 H, (CO), 169.3 (C₂₀), 138.5 (C₃), 135.8 and 134.8 (C₂ and C₁₃), 127.5 (C_7) , 111.4 (C_{12}) , 101.5 (C_{21}) , 68.2 (C_5) , 67.1 (C_{15}) , 54.2 (OCH_3) ,
50.5 (C_{16}) , 45.2 (C_{17}) , 41.6 (C_{14}) , 26.1 and 25.8 $(C_{19}$ and $C_6)$, 12.6 (C_{18}) .

Preparation of Compound 27b. MCPBA (19 mg, 0.11 mmol) was added to a stirred solution of isoxazolidine (8; 35 mg, 0.1 mmol) in dry CH_2Cl_2 (3 mL) under argon at 0 °C. After 20 min at 0 "C, the reaction medium was **poured** into a saturated aqueous solution of Na_2CO_3 (2 mL) and extracted with CHCl₃. After a standard workup, pure nitrone **27b** was isolated in quantitative yield: IR 3200, 2950, 1730, 1600; UV (EtOH) 226, 279 (sh), 285, 294; MS, m/z (relative intensity) 368 (M⁺), 339, 187 (100), 186, 170,169,156,144,143,130; lH *NMR* (400 **MHz)** 8.47 (s, 1 H, N,H), 7.46 and 7.32 (2 d, 2 H, $J = 8$, C₉H and C₁₂H), 7.23 and 7.13 (2 dd, 2 H, $J = J' = 8$, $C_{10}H$ and $C_{11}H$), 7.16 (d, 1 H, $J_{15,OH} = 11$, disappeared by D_2O exchange, OH), 5.78 and 5.55 (2 br s, 2 H, C_3H and $C_{21}H$), 4.35 (br dd, 1 H, $J_{15,OH} = 11$, $J_{14,15} = 3$, $C_{15}H$), CO_2CH_3), 3.35 and 3.32 (2 H, 2 m, C_5 H and C_6H), 3.22 (m, 1 H, $C_{14}H$), 3.18 (m, 1 H, $C_{6'}H$), 2.82 (dd, 1 H, $J_{17,17'} = 14$, $J_{17,14} = 3$, $C_{17}H$), 2.59 (br dd, 1 H, $J_{17,17'} = 14$, $J_{17,14} = 3.5$, $C_{17'}H$), 2.51 and 2.42 (2 m, 2 H, $J_{19,19'} = 15$, $C_{19}H_2$), 1.13 (t, 3 H, $J_{18,19} = 7$, $C_{18}H_3$). 3.94 (dd, 1 H, $J_{5,5'} = 11.5$, $J_{5,6} = 4$, $J_{5,6'} = 2$, C_5H), 3.77 (s, 3 H,

Preparation of **Compound 28.** To a stirred solution of 21 cyanocatharanthine **(1 1;** 50 mg, 0.14 mmol) and vindoline **(4;** 70 mg, 0.15 mmol) in CH_2Cl_2 (1 mL) under argon was added at -70 "C MCPBA (24 mg, 0.14 mmol). After 10 min, TFAA (0.07 mL, 0.48 mmol) was added to the reaction medium and the solution stirred at 0 °C for 1 h under argon. After evaporation of the solvent, the residue was dissolved in CH₃OH (2 mL) and reduced by NaBH4. A standard workup and preparative TLC (eluent CHC13/CH30H, 955) afforded compound **28** 8 mg (7%); **IR** 3300, 2950,1740,1620; UV 221,232,266,294,304; MS, *m/z* 815,788, 733,756,730,656,548,469,308,282,200,188,135,122,121; NMR (400 MHz) 7.35-6.97 (m, 4 H, H aromatic), 6.58 and 6.07 (2 s, 2 $J_{14,15} = 9.5, J_{3,14} = 3.5, C_{14}H$, 5.53 and 5.13 (AB system, 2 H, J_{AB}) 2.67 (s, 3 H, N_aCH₃), 2.03 (s, 3 H, OCOCH₃), 1.12 and 0.22 (2 t, 6 H, $J = 7$, $C_{18'}H_3$ and $C_{18}H_3$). H, C₉H and C₁₂H), 6.25 (d, 1 H, $J_{14',15'} = 7$, C₁₅^H), 5.75 (dd, 1 H, $= 13$, C₆H₂), 5.37 (s, 1 H, C₁₇H), 5.28 (d, 1 H, $J_{14,15} = 9.5$, C₁₅H), 3.85, 3.77, 3.58 (3 s, 9 H, C₁₁OCH₃, C₁₆CO₂CH₃ and C₁₆CO₂CH₃)

Preparation of Compound 23a. 21-Cyanocatharanthine (11; 120 mg, 0.33 mmol) in solution in EtOH (10 mL) was hydrogenated (PtO₂, 50 mg) for 5 days at room temperature. After filtration of the catalyst and evaporation of the solvent, the residue was purified by preparative TLC (CHCl₃/CH₃OH, 95:5) to afford compound 23a: 98 mg (82%); IR 3460, 2910, 2220, 1720, 1450; UV 228, 286, 292; MS, m/z 363, 334, 304, 214, 154, 149; ¹H NMR (60 MHz) 7.5 (s, 1 H, N_aH), 7.4-6.8 (m, 4 H, H aromatic), 3.8 (s, 3 H, $C_{16}CO_2CH_3$), 1.0 (t, 3 H, $C_{18}H_3$).

Preparation of Compound 23b. MCPBA (45 mg, 0.26 mmol) in CH_2Cl_2 (15 mL) was added at -10 °C to a stirred solution of **15,20-dihydro-21-cyanocatharanthine (23a;** 80 mg, 0.22 mmol) in $CH₂Cl₂$ (5 mL) under argon. After 10 min, the reaction mixture was poured into a saturated aqueous solution of $Na₂CO₃$ and extracted by CHCl₃. A standard workup afforded pure 15,20dihydro-21-cyanocatharanthine N_b -oxide $(23b)$: 78 mg (93%) ; IR 3400,2950,2200,1730,1460; UV 228,286,292; MS, *m/z* 379, 362,333, 144,130; 'H NMR (60 MHz) 9.1 (s, 1 H, NaH), 7.5-6.9 $(m, 4 H, H \text{ aromatic})$, 3.7 (s, 3 H, $C_{16}CO_2CH_3$), 1.1 (t, 3 H, $C_{18}H_3$).

Preparation of **Compound 29 (One Pot Experiment).** A solution of **15,20-dihyclro-21-cyanocatharanthine (23a;** 60 mg, 0.16 mmol) under argon in CH_2Cl_2 (1 mL) was treated for 10 min at -10 "C by m-chloroperbenzoic acid (30 mg, 0.18 mmol). When the formation of the N_b -oxide was complete, vindoline $(4; 73 \text{ mg})$, 0.16 mmol) and TFAA (0.07 mL, 0.48 mmol) were added sequentially, and the reaction mixture was stirred for 1 h. After evaporation of the solvent, the residue was dissolved in $CH₃OH$ (2 mL) and reduced by NaBH,. A standard workup and preparative TLC (eluent ether/hexane/CH₃OH, 80:15:5) afforded compound 29: 8 mg (6%); IR 3300, 2950, 1740; UV 221, 232, 266, 294,304; MS, *m/z* 817,774,758,741,658,577,550,282,142,141, 135; lH NMR (400 MHz), 7.3-7.1 (m, 4 H, H aromatic), 6.5 and 6.1 (2 s, 2 H, C₉H and C₁₂H), 5.57 (dd, 1 H, $J_{14,15} = 9.5$, $J_{3,14} =$ 3.5, $C_{14}H$), 5.55 and 4.95 (AB system, 2 H, $J = 13$, C_6H_2), 3.87, (s, 3 H, N_aCH₃), 2.03 (s, 3 H, OCOCH₃), 0.97 and 0.19 (2 t, 6 H, 3.77, and 3.60 (3 s, 9 H, C₁₁OCH₃, C₁₆CO₂CH₃, C₁₆CO₂CH₃), 2.67 $J = 7$, C₁₈H₃, C₁₈^{H₃</sub>).}

Acknowledgment. We thank Mr. R. Z. Andriamialisoa for high-field NMR spectra and decoupling experiments.

Registry **No. 3,** 57207-75-7; **4,** 2182-14-1; 8, 58514-21-9; **11,** 82622-21-7; **12,** 82622-22-8; **13,** 82660-26-2; **23a,** 82622-23-9; **23b,** 82622-24-0; **27a,** 82622-25-1; **27b,** 82622-26-2; 28, 82622-27-3; **29,** 82622-28-4.

Supplementary Material Available: Tables of thermal parameters, bond distances and angles, and atomic coordinates for **12** (4 pages). Ordering information is given on any current masthead page.

⁽¹⁹⁾ G. M. Sheldrick, "SHELX. A Program for Crystal Structure Determination", University of Cambridge, Cambridge, England, 1976. (20) C. Riche, "DEVIN 80. Direct Method of program for Phases Determination", 1980.

⁽²¹⁾ C. K. Johnson, Report ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, TN, (1965).